Рис. 1. Химера Callorhinchus milii, живущая в океане у южного побережья Австралии. По-английски ее называют или elephant shark («слоновая акула»), или ghost fish («рыба-привидение»). Это типичная хрящевая рыба, хотя и довольно необычно выглядящая. Характерная деталь ее облика — разросшееся рыло (рострум), имеющее, как иногда пишут, форму мотыги; предполагается, что частично это нужно для осязания, а частично для рыхления грунта, из которого рыба добывает пищу. В последнее времяCallorhinchus milii стала популярным объектом исследований в области сравнительной генетики. Фото с сайта fishindex.blogspot.ru
Австралийские ученые нашли у хрящевой рыбы Callorhinchus milii белки и гены биохимического сигнального пути, который у млекопитающих участвует в образовании костей. У Callorhinchus milii и у человека эти гены очень сходно работают, несмотря на то, что костной ткани у современных хрящевых рыб не бывает. Это значительно подкрепляет старую гипотезу, согласно которой нынешнее «бескостное» состояние хрящевых рыб является эволюционно вторичным: у их предков кости были.
Кто относится к позвоночным животным? Ясный научный ответ на этот вопрос дал в 1816 году Анри-Мари Блэнвиль (Henri Marie Ducrotay de Blainville), который предложил разделить позвоночных на пять классов: рыбы, амфибии, рептилии, птицы и млекопитающие. Позднее, уже во второй половине XIX века, английский сравнительный анатом Томас Гексли (Thomas Henry Huxley) разделил рыб на хрящевых и костных, а американский палеонтолог Эдвард Коп (Edward Drinker Cope) выделил особую группу бесчелюстных. После этого система позвоночных более или менее устоялась и стало можно строить четкие схемы их эволюции (рис. 2).
|
Самые древние и примитивные группы современных позвоночных — это, во-первых, бесчелюстные и, во-вторых, хрящевые рыбы. К бесчелюстным относятся миноги и миксины, к хрящевым рыбам — акулы, скаты и химеры. Все эти животные имеют одну общую особенность: у них нет костей. Внутренний скелет при этом, конечно, есть, но только хрящевой (см.: Позвоночник у миксин всё-таки есть, но очень необычный, «Элементы», 23.05.2013). Самые твердые образования в теле миног и миксин — зубцы ротового аппарата, состоящие из рогового вещества (примерно как наши ногти). У хрящевых рыб ситуация несколько иная: у них в коже сидят чешуи, построенные из минерализованной твердой ткани, которые на челюстях переходят в настоящие зубы. Но ни единой кости в теле акулы, химеры или ската всё равно нет.
Для тех зоологов, которые изучали в основном современных животных, было естественно предположить, что миноги, миксины и хрящевые рыбы — это остатки самого древнего этапа эволюции позвоночных. У их предков скелет тоже был чисто хрящевым, то есть это примитивная черта. А кость появилась уже в более молодых эволюционных ветвях в ходе прогрессивного развития.
Проблема была в том, что в такую схему очень плохо вписывались палеонтологические данные. И чем лучше развивалась палеонтология, тем это становилось очевиднее. Большинство ранних позвоночных, известных из палеонтологической летописи, имеет тяжелые панцири, состоящие из костей либо костеподобных тканей (рис. 3). Если миноги, миксины и хрящевые рыбы произошли от них — значит, скелет в этих группах исчез вторично, путем редукции.
В результате сложились две гипотезы: (1) гипотеза примитивности скелета таких животных, как бесчелюстные и хрящевые рыбы; (2) гипотеза происхождения всех этих животных от панцирных предков, потерявших твердый скелет в дальнейшем. Убежденным сторонником первой гипотезы был, например, русский академик А. Н. Северцов; убежденным сторонником второй — крупнейший шведский палеонтолог Эрик Стеншё (Erik Helge Osvald Stensiö). Северцов мало занимался палеонтологией, предпочитая полагаться в основном на данные о строении современных животных; Стеншё — наоборот. К согласию они так и не пришли.
Эта проблема имеет значение не только для узкого круга зоологов и палеонтологов. Ведь скелетные образования — просто пример, хотя и важный. Если прав Северцов, то эволюция скелета позвоночных предстает перед нами как однонаправленный прогресс. Если же прав Стеншё, значит, все происходило гораздо более нелинейно и роль регресса была не меньше. Речь идет об общем характере эволюционного процесса.
Ясно, что интерпретация ископаемых остатков бывает и неоднозначной. Но уж современные хрящевые рыбы доступны нам для изучения целиком, до каждой клеточки. Итак, есть ли свидетельства того, что у их предков были кости?
Исследователи из Школы медицинских наук Мельбурнского королевского технологического института (School of Medical Sciences, RMIT University, Австралия) решили привлечь к ответу на этот вопрос данные молекулярной биологии развития. Почему бы не изучить белки, синтез которых заведомо необходим для формирования костей? Если такие белки найдутся у хрящевых рыб — это будет хотя и косвенным, но серьезным доводом за то, что костная ткань у них когда-то была.
Например, у многоклеточных животных очень распространен регуляторный белок, который называется Wnt. Он выделяется клетками, воспринимается рецепторами других клеток и влияет на внутренние процессы в них, в частности на активность генов. Функции белка Wnt очень разнообразны (см.: Белок–регулятор индивидуального развития управляет движением раковых клеток, «Элементы», 18.04.2008), поэтому внутриклеточных сигнальных путей, через которые он действует, существует несколько. Один из таких сигнальных путей — путь Wnt/бета-катенин — как раз и важен для развития скелетных структур (см.: Разгадан механизм регенерации конечностей, «Элементы», 27.11.2006). Бета-катенин — это белок, который активируется в цитоплазме клетки под действием белка Wnt, а потом проникает в ядро и воздействует там на гены. Работа самого сигнального пути тоже должна регулироваться, поэтому существуют еще и факторы, которые могут его блокировать: это белки Sfrp и склеростин. Полный набор белков пути Wnt/бета-катенин есть, например, у человека; известны, конечно, и гены, эти белки кодирующие.
Выяснилось, что у химеры Callorhinchus milii (рис. 1) все перечисленные белки и гены тоже есть. Более того, области, где синтезируются белки пути Wnt/бета-катенин, расположены в организме хрящевой рыбы примерно так же, как и в организме млекопитающего (рис. 4). Видимо, это означает, что такая рыба вполне могла бы создать костную ткань, если бы «захотела». Никаких запретов на это у нее нет.
|
Так был ли у предков хрящевых рыб твердый скелет? Похоже, что да. Современная палеонтология это подтверждает. Например, у очень древней акулы Doliodus problematicus в плавниках обнаружены твердые скелетные шипы, примерно такие же, как у панцирных рыб (см.: Miller et al., 2003. The oldest articulated chondrichthyan from the Early Devonian period). Скорее всего, все древние рыбы когда-то имели этот признак.
У самых первых, очень примитивных позвоночных твердого скелета, насколько мы сейчас знаем, всё-таки не было (см.: С. Ястребов. Эволюция первых хордовых и палеонтология, «Потенциал», №5, 2012). Но он очень быстро развился, и возник целый эволюционный уровень, состоящий из более или менее «бронированных» форм (рис. 3). К этому эволюционному уровню относятся почти все ископаемые бесчелюстные и, видимо, все первые рыбы. А вот потом «броня» стала регрессировать — постепенно, в разных эволюционных ветвях с разной скоростью и в разной степени. Именно так представляли себе эволюцию позвоночных Э. Стеншё и его ученики, и похоже, что их мнение было верным.
Источник: Damian G. D’Souza, Kesha Rana, Kristi M. Milley, Helen E. MacLean, Jeffrey D. Zajac, Justin Bell, Sydney Brenner, Byrappa Venkatesh, Samantha J. Richardson, Janine A. Danks. Expression of Wnt signaling skeletal development genes in the cartilaginous fish, elephant shark (Callorhinchus milii) // General and Comparative Endocrinology. 2013. V. 193. P. 1–9.
http://elementy.ru/news?newsid=432086
< Предыдущая | Следующая > |
---|